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Abstract

The relationship between the predicted transition location and the first and second

modes of instability in two-dimensional supersonic boundary-layer flow on a flat plate is

examined. Linear stability theory and the N-factor criterion are used to predict transition

location. The effect of heat transfer is also studied; the results demonstrate that the

transition reversal phenomenon can be explained by the opposite effect of cooling on the first

and second modes of instability. Compressibility is destabilizing at free-stream Mach

numbers of 2 to 3.5. The predicted transition location is due to the oblique first modes of

instability, up to free-stream Mach numbers between 6 and 6.5. At higher Mach numbers,

the predicted transition location is due to a combination of two-dimensional first and second

modes of instability.



1. Introduction

A relationship exists between different laminar flow instability mechanisms in low- and

high-speed boundary-layer flows on aerodynamic surfaces and the breakdown of the laminar

flow to turbulence. However, the details of this relationship are not well understood,

particularly for high-speed flows. The most common approach for relating instability to

transition is the N-factor method, in which transition is assumed to occur whenever the

integral of the linear growth rate of any instability wave reaches a certain value that is close

to 9 in two-dimensional (2-D) flows. In high-speed flows, the instability is complicated by the

possible existence of higher modes of instability, in addition to the single mode of instability

(the Tollmien-Schlichting (T-S) wave) that exists in low-speed flows.

Mack 1 pointed out that in boundary layers the mean flow, relative to the disturbance

phase velocity, can be supersonic. Mack determined through numerical studies that

whenever the relative flow is supersonic over some portion of the boundary-layer profile, an

infinite number of wave numbers corresponds to a single phase velocity. He called the

additional inviscid disturbances "the higher modes" and showed that for 2-D disturbances the

first of the additional modes is the most unstable. Mack called the first of the higher modes

the second mode, which is also referred to in the literature as the Mack mode. The originally

known mode that corresponds to the mode in incompressible flow is called the first mode.

Through direct numerical calculations, Mack revealed that three-dimensional (3-D) first-

mode disturbances are more unstable than 2-D first-mode disturbances at all supersonic

Mach numbers.

The first mode of instability is characterized by the fact that its growth rate peaks at

relatively low frequencies when compared with the second and higher modes. In general, the

higher the mode, the higher the frequency at which its growth rate peaks. Except for the

second mode, the higher modes are usually damped at finite Reynolds numbers. Mack 2

demonstrated the capability to distinguish between different modes when the number of

oscillations in a disturbance quantity eigenfunction (such as a pressure disturbance

eigenfunction) which corresponds to a certain eigenvalue is considered. However, in the

regions where the modes merge with each other, the determination of whether the mode is,

for example, a first or a second mode is difficult. The merging of unstable modes takes place

at Mach numbers that are higher than approximately 4.8 in adiabatic boundary layers at

wind-tunnel temperatures; this value increases with cooling. The second mode becomes

amplified at a Mach number of approximately 3.5 in adiabatic boundary layers. In the

present work, we examine the relationship between transition and modes of linear instability

in both adiabatic and cooled (or heated) high-speed flows over a flat plate.



2. Notation and Assumptions

In the calculations and results presented in this work, the spatial stability theory is

used. Therefore, the frequency of the disturbance is real, whereas the spatial eigenvalue is

complex. The growth rate of the wave is denoted by -hi; its streamwise wave number is

denoted by a r. In addition, a = ar + iai, where i = _ is made nondimensional with respect

to the length scale 5" =_v*_x*/V*_, such that a=a*5*r. The dimensional free-stream

kinematic viscosity is denoted by v* and is equal to p*_/p*_, where p*_ is the dimensional

free-stream dynamic viscosity and p*_ is the dimensional free-stream density. The spanwise

wave-number parameter B is defined as B = 1000fl/R and is fixed for the same physical wave

as it propagates downstream. The nondimensional spanwise wave number is fl = fl*5_, and

fl* is the dimensional spanwise wave number of the wave. The stability Reynolds number is

R = U*8 r/v*. The frequency parameter F is defined as F = 2zf*v*_/U *_, where f* is the

dimensional frequency in cps (Hz) and is related to the dimensional circular frequency co*

through co*= 2nf*. Therefore, o_= eo*5_/ U* is related to F through _o= FR.

In the compressible mean-flow and stability calculations, the Prandtl number Pr and the

specific heat at constant pressure Cp are usually constant, and the dynamic viscosity p and

the thermal conductivity _: normally vary with temperature in accordance with the

Sutherland formula. Mack 3 presented a formulation for the stability problem that accounts

for a variable Pr and a constant Cp. Reed and Balakumar, 4 Bertolotti, 5 and Masad et al. 6

presented formulations and results to account for variable tt, Cp, and _:. Reed and

Balakumar 4 and Masad et al. 6 used the conventional linear quasi-paralle] stability theory,

and Bertolotti 5 used the linear parabolized stability equations (PSE), which account for the

leading-order nonparallel effects. The effect of variable fluid properties on the maximum

growth rate of instability waves was small. The results presented in the present work were

obtained with a constant Prandtl number of 0.72 in both the mean-flow and stability

calculations.

In boundary-layer stability analyses, the quasi-parallel assumption is usually invoked,

which means that the mean-flow quantities that arise from the growth of the boundary layer

are neglected. The quasi-parallel assumption takes the growth of the boundary layer to be

small over a wavelength and, consequently, considers the wave motion to be determined by

the local boundary-layer profile, so that the nonparallel terms are neglected. By neglecting

the nonparallel terms, the quasi-parallel assumption simplifies the partial-differential

disturbance equations by allowing use of the normal-mode form of the solution locally to

separate the streamwise, spanwise, and temporal variations. Homogeneous, ordinary

differential equations result, with the appropriate homogeneous boundary conditions and,

therefore, a differential eigenvalue problem. Two categories of techniques can be used to



account for the nonparallel effects: numerical perturbation methods and linear PSE. The

effect of nonparallelism on the stability of 2-D compressible boundary layers was studied in

the context of numerical perturbation methods by Gapanov 7 and E1-Hady. 8 Some nonparallel

results with this approach were also presented by Masad et al. 6 and compared with the

experimental data of Kosinov et al. 9 With the PSE, Bertolotti and HerbertJ ° Chang et al., 11

and Chang and Malik 12 accounted for the nonparallel effects on the stability of compressible

boundary layers. The results of the two techniques agree well 12, except in the region where

the first mode merges with the second mode. The results also show that the nonparallel

effects on the growth rates of three-dimensional disturbances can be significant. All of the

results presented in this work were obtained with the quasi-parallel assumption.

3. Stability of Cooled Boundary Layers

For air boundary-layer flow over a flat plate, as the free-stream Mach number M_

increases, the adiabatic wall temperature also increases. An approximate, but fairly

accurate, formula that relates the adiabatic wall temperature to the free-stream temperature

and the free-stream Mach number is given by

T_d = l+ _'-lq'-fi-iM_ (i)
T: 2

where 7 is the ratio of the specific heats, the Prandtl number Pr is given by

er= _:C; (2)

and _:*_is the dimensional free-stream thermal conductivity. Relation (1) is based on the

assumption that the temperature profile across the boundary layer is a function of only the

streamwise velocity. (See Schlichting, 13 pp. 330-334.) In adiabatic boundary layers, this

assumption is satisfied when the Prandtl number is unity; therefore, for a nonunity Prandtl

number, relation (1) is approximate. The exact variation of the adiabatic wall temperature

with the free-stream temperature and the free-stream Mach number can be computed by

numerically solving the compressible boundary-layer equations that are subject to the

thermal boundary condition o_/_ = 0 at the wall. A comparison between the adiabatic wall

temperature calculated from the approximate formula and the exact numerical solution for a

range of free-stream Mach numbers is given in table 1.

As shown in table 1, the adiabatic wall temperature reaches very high values at high

Mach numbers. Existing metallic and composite materials cannot withstand some of these

high temperatures. In such cases, the materials must be thermally protected, which can be
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achieved by cooling the surface. Therefore, an evaluation of the effect of cooling on stability

and the transition to turbulence in high-speed boundary layers is of practical importance.

The effect of heat transfer on the inviscid and viscous instability of 2-D compressible

boundary layers was studied by Mack. 2,14 More recent studies have been conducted by

Wazzan and Taghavi, 15 Gasperas, 18 Malik, 17 Vignau, TM Arnal et al., 19 and Masad et al.6

However, these studies focused on the effect of heat transfer on the stability of supersonic

boundary layers, rather than on transition.

Cooling thins the boundary layer and modifies the mean-flow streamwise velocity profile

by making it fuller. Both of these changes in the boundary layer have a stabilizing effect.

Furthermore, although the adiabatic compressible flow has a single, generalized inflection

point inside the boundary layer, cooling creates another generalized inflection point near the

wall. _ An increase in Mach number moves the generalized inflection point away from the

wall. As the cooling level increases, the two generalized inflection points move closer to each

other until they meet and disappear. The minimum cooling level needed to eliminate the

generalized inflection points increases as M_ increases.

From both a practical and an experimental point of view, the wall temperature is more

easily fixed than the heat flux. Therefore, we express the level of heat transfer by specifying

the ratio Tw/Tad, where Tw is the actual wall temperature (made nondimensional with

respect to T.*) and Tad is the adiabatic wall temperature (also made nondimensional with

respect to T_*). If TwIT _ = 1, then the wall is adiabatic; if Tw/T_ < 1, then the wall is

cooled; if Tw/T_, d > 1, then the wall is heated. The adiabatic wall temperature Tad is

calculated from equation (1). For first-mode waves in supersonic adiabatic boundary layers,

Mack 2 found that oblique (3-D) waves are more unstable than 2-D waves. Cooling has a

stabilizing influence on the 2-D and 3-D first-mode waves.

The stabilization by cooling of the most amplified (over all frequencies and wave angles)

first-mode waves at R = 1500 is shown in figure 1 for three wall temperatures. In the

adiabatic case, the maximum growth rate decreases monotonically with M_. However, when

Tw/Tad = 0.6, the maximum growth rate increases with M_. Figure 1 shows that cooling is

more effective in stabilizing first-mode waves at low rather than high M_.

As mentioned earlier, the most amplified second-mode waves are 2-D. Although cooling

stabilizes first-mode waves, it has the opposite effect on the most amplified (over all

frequencies) second-mode waves and destabilizes them. Heating, rather than cooling,

stabilizes second-mode waves. Because second-mode waves are significant at high Mach

numbers where the adiabatic wall temperatures are already large in terms of existing

materials, heating is not practical in stabilizing the flow at high Mach numbers. Figure 1

shows that the effect of cooling on increasing the maximum growth rates of second-mode



waves decreases as M_ increases. Note in figure I that for the adiabatic case the growth rate

peaks at some value of M_, which shifts towards a lower M_ as the wall is cooled. Shaw and

Duck 2° showed that at a free-stream Mach number of 4 and when the cooling level exceeds a

certain value, the inviscid maximum growth rate of second-mode waves begins to decrease.

The present viscous calculations at the same Mach number with R = 1500 and T_ = 120 K

show a similar effect (Figure 2). However, viscous calculations at R = 1500 and at a Mach

number of 10 showed that this reversal in the effect of cooling does not take place even with

cooling levels as low as Tw/T_ = 0.02 at T._ = 50 K (Figure 3) and Tw/T_ = 0.01 at T.. ---300

K (Figure 4).

The reference length scale here is 5_ =_]v*.x*/U*; however, if the displacement

thickness is used as a reference length scale, then the length scale will decrease by cooling

the surface. Consequently, the rate of change of growth rates with the cooling level will

decrease in comparison with the use of 8_ as a reference length scale. If the displacement

thickness is used as a reference length scale, then the results show that the second mode is

nearly unaffected by cooling, which is demonstrated clearly by Arnal. 21 When the

amplification factors (N factors) are computed, the results do not depend on the reference

length scale.

When the variation of the growth rates with frequency F or the neutral curves in the

F-R domain for adiabatic flow over a flat plate is considered, the first mode merges with the

second mode. As shown by Mack, 2 up to a certain Mach number the merging takes place

while both waves are stable, but at Mach numbers higher than that value, the merging

occurs while both modes are unstable. Mack, 2 Arnal et al., 19 and Arna121 have shown that

cooling increases the Mach number at which the merging takes place while the first- and

second-mode waves are stable; that is, cooling tends to divide the high Mach number, single-

region neutral curve into two distinct regions.

4. Transition in Cooled Boundary Layers

The decrease in the effectiveness of cooling on changing the stability characteristics at

high Mach numbers is in qualitative agreement with some of the experimental data.

Experimental results (Potter 22) show clearly that the change in the transition Reynolds

number at high Mach numbers is slight when compared with the change at low Mach

numbers. In fact, some experimental results show that heating or cooling the wall at

hypersonic Mach numbers has little or no effect on the location of transition (Deem and

Murphy, 23 Sanator et al., 24 and Krogmann25). The experimental work of Demetriades 26 (in

which the effect of wall cooling on the boundary layer over a cone at a Mach number of 8 was

studied) was the first to show that second-mode disturbances are destabilized by cooling and



shift towards higher frequencies. The experimental data of Lysenko and Maslov 27 at M., = 4

clearly demonstrate the destabilizing effect of cooling on second-mode waves. The

stabilization of first-mode waves and the destabilization of second-mode waves by cooling was

also demonstrated by Stetson and Kimmel 2s for flow past a cone at a free-stream Mach

number of 8.

A phenomenon that was observed and reported even in early experimental studies on

the effect of cooling in supersonic boundary layers is transition reversal and re-reversal. At

moderate Mach numbers between supersonic and hypersonic values and at hypersonic Mach

numbers, cooling the wall resulted in a downstream shift in the location of transition in

wind-tunnel experiments. However, further cooling shifted this location upstream, which is

called transition reversal. Cooling the wall even more caused the transition location to start

to move downstream again, which is called transition re-reversal. (See Potter22.) This

phenomenon was noticed by many experimentalists, including Wisniewski and Jack, 2_

Sheetz, 3° and Richard and Stollery. s1.32 Van Driest and Boison 83 demonstrated that the

effects of roughness, coupled with cooling, may lead to transition reversal. Lysenko and

Maslov s4 experimentally explained one of the causes of both transition reversal and

transition re-reversal at Mach numbers of 3 and 4. They showed that the decrease in the

transition Reynolds number (transition reversal) by cooling is caused by roughness that is

created by frost. The increase in the transition Reynolds number (transition re-reversal) by

additional cooling was attributed by Lysenko and Maslov to the change of the frost structure,

which decreases the roughness by forming a smooth film of frost on the cooled surface. In all

tests carried out by Lysenko and Maslov _ in wind tunnels, transition reversal and transition

re-reversal occurred at a wall temperature in the range of 80 to 190 I_ The formation of frost

in the hypersonic wind-tunnel experiment of Richards and StoUery 82 was observed with

transition reversal and re-reversal. However, Richards and Stollery s2 believe that the

formation of frost has only a small effect on the movement of the transition location.

The stabilization of the first-mode waves and the destabilization of the second-mode

waves by cooling also offer another explanation for transition reversal over a range of Mach

numbers, but still do not explain transition re-reversal. Wazzan and Taghavi 15 indicated

that the inviscid characteristics of the higher modes may provide an answer to the

phenomenon of transition reversal in cooled, compressible boundary layers. When the first

mode is responsible for transition, cooling the surface delays transition. However, cooling the

surface destabilizes the second mode. Beyond a certain level of cooling, the second mode

causes transition, and further cooling causes the location of transition to move upstream

(figure 5(a)). This scenario may occur at flight conditions at which the temperatures are, in



general,not aslow as those in a wind tunnel. Transition reversal was observed by Merlet

and Rumsey s5 on cones in supersonic free-flight tests.

The experimental data give contradictory results on the relationship between wall

cooling and the transition Reynolds number at high Mach numbers. Some experimental

studies on fiat plates and sharp cones report no significant influence of cooling on the

transition Reynolds number. However, other experimental results show that cooling has

marked influence on the transition Reynolds number at hypersonic Mach numbers. A short,

intensive review of the experimental studies on the effect of cooling on boundary-layer

transition is given by Potter. 22 The results in figure 5(a) indicate clearly that by applying

cooling to the fiat plate, the instability mode responsible for transition switches from a first

to a second mode. As the fiat plate is cooled, the predicted transition location moves

downstream and, with sufficient cooling, starts to move upstream (transition reversal). In

figure 5(a) at a Mach number of 5, the switch from the first to the second mode of instability

as the cause of transition and, consequently, transition reversal occurs at a level of surface

temperature between (Tw/T_) = 0.7 and (Tw/T_) = 0.8. This level is expected to decrease

as the free-stream Mach number decreases. In fact, recent calculations by Mack se at a free-

stream Mach number of 3 and a free-stream temperature of 217 K show that the reversal

shown in figure 3 takes place at Tw/T_ = 0.6. Figure 5(a) clearly shows that when both

modes of instability are considered the effect of cooling on changing the predicted transition

location becomes less significant. The frequencies and spanwise wave numbers that

correspond to the data of figure 5(a) are shown in figures 5(b) and 5(c), respectively. We note

here that although the maximum growth rate of second-mode waves decreases when the

cooling level exceeds a certain high value (Figure 2), a high level of cooling does not cause a

transition re-reversal when transition is assumed to occur as the result of a single frequency.

The maximum growth rates in figure 2 are associated with very high frequencies that do not

contribute to transition, except within an envelope method in which the local maximum

growth rate (over all frequencies) is integrated with respect to R to compute the N factor.

Only in that context we can get a transition re-reversal at high levels of cooling.

Lysenko s7 presented results similar to those presented in figure 3, but at a Mach

number of 4 for flow past a cone. Lysenko's results were obtained by solving the stability

equations with the Dunn-Lin ss approximation.

In figure 5, the points where the actual calculations were made are denoted by circles;

the circles are joined by straight lines. The calculations were performed by first f'Lxing the

frequency F and. the spanwise wave number parameter B and then computing the location

(the Reynolds number) where the N factor reached a value of 9. With B fLxed, F was then

varied, and the new location where the N factor reached 9 was computed, etc. The value off



thatresultedin thelowestReynolds number atwhich theN factorreached9 was then fixed,

and B was variedtocompute the lowestReynolds number at which N reached 9. With the

computed value ofB fLxed,F was varied,etc.,untilboth F and B remained fLxedwithin

presettolerances.The tolerance(step)inF was 10-e,and thestepinB was 10-3.Because the

most amplifiedsecond-mode waves are 2-D, a maximization overB isnot necessarywhen

thesewaves are considered.A similarapproach isused forthe resultsin figure6,which is

discussedinthe nextsection.

5. Transition in Adiabatic Boundary Layers

A significant result seen in figure 5(a) is that for adiabatic flow with a free-stream Mach

number of 5 the predicted transition is caused by the first mode of instability, even though

the maximum growth rate of second-mode waves at this Mach number exceeds that of first-

mode waves by a large amount (figure 1). The reason for this difference is that the

streamwise extent of the unstable range of first-mode instability waves is much longer than

that of second-mode waves, although the maximum growth rates of second-mode waves are

larger than those of first-mode waves at hypersonic Mach numbers. Therefore, the

integrated growth rate (N factor) of first-mode waves reaches the value 9 before that of

second-mode waves.

The value of the free-stream Mach number (in adiabatic flow) at which the cause of

transition becomes the second mode of instability is of interest. To find this value, the

predicted transition location (caused by both first and/or second modes of instability) was

computed with the N-factor criterion over a range ofMach numbers that extends from 0 to 7.

The results are shown in figure 6(a). The squares in figure 6 indicate conditions where

transition is caused by a combination of the 2-D first and second modes of instability. These

two modes are assumed to be continuous, which can be justified by considering the variation

of the number of oscillations in the eigenfunctions of these modes with the frequency. At the

selected free-stream temperature of 150 K and a Prandtl number of 0.72, the predicted

transition is caused by a combination of 2-D first and second modes of instability at a free-

stream Mach number betw.een 6 and 6.5. The experimental results of Stetson and Kimmel 2s

show that second-mode waves are responsible for transition at hypersonic Mach numbers. In

figure 6(a), the N-factor criterion predicts that compressibility destabilizes at free-stream

Mach numbers in the range of 2 to 3.5. In this range, an increasing Mach number shifts the

predicted transition location upstream. This result is significant for laminar flow control

(LFC) applications. For supersonic transport, the optimal Mach number appears to be

approximately 2 for LFC consideration. Furthermore, this result is in agreement with the

experimental data of Sanator et al.,24 which show a decrease in the transition Reynolds

9



numberbetweentheMachnumbersof 2 and 3.5, followed by an increase in the transition

Reynolds number at Mach numbers higher than approximately 3.5. However, a quantitative

comparison of the computed and measured transition Reynolds numbers is not valid because

the experiments were performed in noisy wind tunnels.

The frequencies and spanwise wave numbers that correspond to the results in figure

6(a) are shown in figure 6(b) and 6(c), respectively. In figures 5 and 6, when the transition

location predicted with the N factor criterion moves upstream, the corresponding most

dangerous frequency increases. This result occurs when transition is caused by either the

first or the second mode of instability. An exception is when transition is caused by a

combination of 2-D first and second modes of instability (the squares in figure 6). This

relationship is always true in subsonic flows over smooth flat plates (Masad and Malik39), as

well as in flat plates with a roughness element (Masad and Iyer 4°) and in various thermal

and velocity boundary conditions. Note also in figures 5 and 6 that, except for subsonic flows

where the most amplified first-mode waves are 2-D, the upstream movement of the transition

location is associated with an increase in the value of the spanwise wave-number parameter

when the first mode is responsible for transition.

Recent calculations by Mack s6 with e 9 showed that at a free-stream Mach number of 3

and a free-stream temperature of 217 K, the transition Reynolds number for adiabatic

conditions was close to 20 million, and the responsible frequency was F = 6 × 10 -e. The

difference between our results and those of Mack is most likely due to the difference in the

free-stream temperature. The calculations of Lysenko 3v for flow past a cone with the

stability equations and the Dunn-Lin 38 approximation show results similar to those in figure

6. Results similar to those in figure 6 and for first-mode waves have been reported by Mack 14

and Arnal et al. 19

6. Conclusions

The relationship between the predicted transition location with the use of the N-factor

criterion and the first and second modes of instability in supersonic flow over a fiat plate has

been studied. The observed transition-reversal phenomenon in cooled supersonic boundary

layers can be explained by the stabilizing effect of cooling on the first mode of instability and

the destabilizing effect of cooling on the second mode of instability. However, the transition

re-reversal phenomenon cannot be explained by these effects, except within an envelope

method in which the local maximum growth rate (over all frequencies) of second-mode waves

is integrated to compute the N factor. The transition reversal explained in this work is

expected to occur under flight conditions in which the temperatures are high enough to

prevent the formation of frost on the surfaces. The effect of compressibility is destabilizing at

10



free-stream Mach numbers in the range of 2 to 3.5. The cause of transition is hypothesized to

be the oblique first-mode waves, up to free-stream Mach numbers of 6 or 6.5. At higher free-

stream Mach numbers, the cause of transition is hypothesized to be a combination of two-

dimensional first and second modes of instability.
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Table 1. Comparisonof Directly ComputedAdiabatic Wall Temperature With That

Calculated From Equation (1) at Too = 120 K and Pr = 0.72

M. Exact Eq. (1) Percent error

1 1.16952 1.16971 .016

2 1.67751 1.67882 .078

3 2.52175 2.52735 .222

4 3.69920 3.71529 .435

6 7.04500 7.10940 .914

8 11.70507 11.86116 1.334

10 17.67643 17.97056 1.664
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